

Process Compensated Resonance Testing Vibrant NDT Ltd Sheffield S3 7AR www.vibrantndt.co.uk

A Partnership between Johnson & Allen Ltd (UK) and Vibrant Corp (US)

Resonant Inspection

Resonant Inspection correlates directly to components' strength

Resonant Frequencies determined by dimensions and material properties of "whole part".

$$f_r \sim \sqrt{k/m}$$

f_r = Resonant Frequency

k = Stiffness (elastic properties e.g. Young's Modulus)

m= Mass (dimensions, density)

ASTM Standards

- ASTM E2001-08 Standard Guide for Resonant
 Ultrasound Spectroscopy Outlines capabilities and
 applications of several resonant inspection
 methods.
- ASTM Standard Practice E2534-10 Describes auditable method for successful application of PCRT specifically and in depth.
- FAA Approval for JT8D-219 T1 Blades

What Does RUS Detect?

- Changes in stiffness due to discontinuities, geometry variation and manufacturing defects.
- Differences in modulus resulting from wide spread material property variations.
- Variations in modulus resulting from microstructure changes such as gamma prime solutioning, rafting, spheroidization etc.

Defect Detection With RUS

A structural defect reduces the stiffness of the part and causes a proportional shift in the resonant frequency.

Defect Masking

Simple resonance analysis is insufficient for defect detection since unacceptable and acceptable patterns are interlaced.

PCRT Spectra

The PCRT System applies pattern recognition to the entire spectra of the part to determine which parts are acceptable and which are defective.

Relational Pattern Recognition

All good blades have a peak separation of 2,600 Hz ± 200 Hz

✓ Bad blades have a peak separation of less than 2,000 Hz

Two Items Critical to PCRT

- Both MTS and Bias tests can get smarter over time as additional confirmed "goods" and "bads" are added to the database.
- MTS scores also serve as a near real time measure of process capability in the manufacturing environment.

Simple Pattern Recognition

PCRT System Components

PCRT System Hardware

- Simple part interface, PZT transducers.
- Precision spectrum analyzer & signal generator.

PCRT System Software

- PC computing power.
- Statistical analysis with the Mahalanobis-Taguchi System (MTS).
- Vibrational pattern recognition algorithms (VIPR).
- Digital storage of spectra.

PCRT System Hardware

Scalable Systems to Meet Your Needs

- Low volume system
 - Hand loaded.
 - Tests up to 2-3 parts per minute.

- High volume system
 - Fully automated.
 - Tests up to 30 parts per minute.

Defect Examples

Inter-granular attack

- Solutioning errors
 Core shift & integrity
- Material loss

variation

- ✓ Hidden discontinuities
- Material property

Thin wall

Cracks

JT8D 1st Stage Turbine Blades

- Core shift in casting produces thin wall.
- Over-temp in service causes gamma prime formations.
- PCRT detects cracks, overheat, inter-granular attack and thin walls.

CF6 80 1st Stage Turbine Blades

- Manufacturing defect leads to premature failure.
- Defective braze joint.
- PCRT detects insufficient braze and misalignment.

Aerospace Applications

In-Service Tracking

Changes in resonance of a part over time correlate well to the accumulation of fatigue and damage *BEFORE* crack initiation.

Resonances in the 108 kHz band

Onset of cracking 45,000 cycles

Life-of-Part Integrity Surveillance

- Tracking resonance changes by serial # over time eliminates "noise" of manufacturing variation.
- Offers OEM's real world data on part performance over time.
- Offers maintainers a tool to predict remaining life of individual components.
- Provides early warning of manufacturing or field performance issues.

Rene 80 hollow coupon in low cycle thermo-mechanical fatigue.

PCRT's Strengths

- Rigid, Hard Components.
- Characterising Mature, Well-Controlled Manufacturing Processes.
- Sorting for Structural Integrity.
- Single, Whole Body Test for Multiple Defect Sources.
- Reduction of Operator Interpretation Error.
- Digital Historical Record of Resonant Spectra for Life-of-Part Surveillance.

Summary

- PCRT is NDT based on structural integrity of the part.
- Pass/Fail testing is fast and requires no operator interpretation.
- PCRT is proven for aerospace applications.
- PCRT is green, requiring no chemicals and little or no part cleaning.