

FOP:s vårkonferens 2012, Sandviken/SWEDEN

High-Resolution X-Ray CT for 3D Failure Analysis and Metrology

Dr. André Egbert Area Sales Manager GE phoenix|x-ray, Wunstorf/D

Outline

- GE phoenix x-ray product line
- Principles of high-resolution X-ray CT
- CT for material science and failure analysis
- CT for 3D dimensional measurements
- Recent advances of high-resolution CT

GE Measurement & Control Solutions

Radiography Product Line

phoenix x-ray

GE: A company with global reach

• 125+ years • >300,000+ employees • 2009 \$157B Rev • In >100 countries

Measurement & Control Solutions (MCS)

7,000 employees 60 countries 2010 \$2B Rev

MCS Product Lines

Inspection Technologies

- Radiography, Film, CT, CR/DR,
- Ultrasonic, Eddy current
- Remote Visual
- Software

Bently Nevada

- Monitors
- Field devices
- Tech support
- System 1® software
- Machinery diagnostics

Measurement Solutions

- Flow
- Gas and Moisture
- Pressure

Control Solutions

- Retrofits and parts
- EX2100
- Mark IV, V, VI, VIe
- OC 4000 DCS
- Software upgrades

Advanced Sensors

- Temperature
- Pressure (MEMS)
- Infrared
- Validation

Reuter Stokes

- Nuclear instrumentation
- Flame detectors
- He-3 detectors
- Scintillations sensors
- Mechanical assemblies

The MCS Radiography Product Range

Film & Equipment

- Complete range of Agfa X-ray films
- State-of-the-art processing equipment
- Film Scanning

Digital Radiography

- Computed Radiography
- Reusable Phosphor plates
- Digital Detector Arrays
- Image processing and storage software

X-ray Sources

- Portable and mobile X-ray systems
- Stationary systems
- Micro- and nanofocus tubes and generators

2D Systems

- Stationary manual and automated digital X-ray inspection systems
- Fully automated defect recognition software

3D CT

- 3D industrial failure analysis with CT
- 3D CT systems for materi-als research, bio-and geosciences

3D Metrology

- Reproducible 3D coordinate measurement with X-ray CT
- Fully automated CT data acquisition and volume processing

phoenix|x-ray

Electronics Inspection

- 2D micro- and nanofocus X-ray
- Software for high resolution electronics inspection
- CAD-based programming

X-ray Diffraction

- Quantitative and qualitative phase analysis, structure and tension measurement
- Single crystal materials orientation analysis

Product line phoenix x-ray

- A leading manufacturer of high-resolution 2D X-ray inspection and 3D computed tomography systems for non-destructive testing and 3D metrology
- Founded 1999 in Wunstorf / Germany
- 2007 acquired by GE Sensing & Inspection Technologies
- More than 1800 installations
- Development and production in Germany

X-ray Electronics Inspection

- Leading edge 180 kV micro- and nanofocus X-ray tube technology
- Live imaging with GE's unique DXR digital detector technology
- Efficient CAD programming with minimized setup time
- Easy and fully automated X-ray inspection of PCB assemblies
- Live 3D CAD data and inspection result overlay in the X-ray live image
- Extremely high defect coverage with high magnification and repeatability

- - phoenix inspector phoenix x|aminer phoenix microme|x phoenix nanome|x

High resolution Computed Tomography

- Non destructive 3D defect analysis for quality assurance and production control
 - Precise quantitative analysis of position, size and frequency of defects
 - Multi-positional 2D cross-section planes or 3D volume view
- Wide range of nanoCT® materials sciences applications
 - Leading 180 kV high power nanofocus X-ray technology
 - Closest to synchrotron CT in many application fields
- phoenix v|tome|x s / m / L

• phoenix nanotom s / m

3D Metrology with CT

- CT precision comparable to tactile
 Coordinate Measurement Machines (CMMs)
 - Reverse Engineering
 - Nominal/actual comparison
 - Dimensional measurement
 (e.g. internal wall thickness, distances, holes, radiuses, angles etc.)
- Click & measure CT with phoenix datos 2.0
 - Automated execution of CT scan, reconstruction, analysis process and generation of first article inspection reports within one hour

GE Measurement & Control Solutions

Principles of high-resolution X-ray computed tomography

Principle of operation

V.E. Cosslett W.C. Nixon Cambridge 1951

"X-ray Shadow Microscope" Nature 10 (1951) S.24 ff.

X-ray tubes

Microfocus vs. nanofocus®

X-ray tubes

Directional - Transmission

Transmission Target

Directional Target

higher magnification

higher power

Resolution

Focal Spot size influence:

Ø 2.5 µm

Ø 1.5 µm

Ø 0.8 µm

Principle of computed tomography

Acquisition: cone beam

of 2D projections under step-by-step rotation

steps< 1°

Principle of computed tomography

Acquisition: fan beam

of line projections under step-by-step Rotation and shift

steps< 1°

Principle of CT: Reconstruction Method

Example: spark plug

Acquisition of 600 projections

imagination at work

600 back projections

3D visualisation

Principle of Operation: CT resolution

Three contributions from apparatus:

- voxel size V=P/M
- focal spot size F
- mechanics

The focal spot size F is the ultimate limit of resolution.

Benefits of Computed Tomography Example: Al Casting

Microfocus 2D X-ray image

Microfocus 3D CT dataset

X-ray CT systems

nanotom m

v|tome|x L 300

nanotom s

GE Measurement & Control Solutions

CT for material science and failure analysis

Glas fibre reinforced material

2D X-ray image

- 2D: Only the average density is visible
- 2D: Voids would be visible

Glass fibres with particles

nanoCT®

Accumulations of the mineral filling material

Carbon fibre composites

CT results

• Impacted carbon fibre composite plates

Carbon fibre composites

CT results

Impacted carbon fibre composite plates

Aluminum casting

2D X-ray image

 Detection of imperfections, such as shrinkage, cracks, inclusions

Aluminum casting

CT volume

Classification of void size in colours

Cylinder head

3 Cylindermotor

450 kV Multiline Scan

0.14 mm voxel size (isotrop!)

Typical tasks

Void detection, wall thickness analysis, metrology

Cylinder head

3 Cylindermotor

450 kV Multiline Scan

0.14 mm voxel size (isotrop!)

Defect analysis (voids).

BGA/CSP solder joints

3D movie

- 3D: wetting conditions and void positions are visible, lead phases are visible
- Solder joints with 400 µm diameter

Slice through the 3D volume of a shell limestone with microfossils (Ø 0.7 mm)

Courtesy of O. Rozenbaum, ISTO France

 $Vx = 1.2 \mu m$

Zoom into a tomographic slice to measure the wall thickness (~3µm) of a small ammonite

Virtual flight through the 3D volume of a shell limestone with microfossils (Ø 1.8 mm)

Courtesy of O. Rozenbaum, ISTO France

 $Vx = 1.25 \mu m$

Movie: Flying around the sample, slicing and fading out

Hoverfly

35 kV Molybdenum target

- 3 µm voxelsize
- even eye facet structures are clearly visible

GE Measurement & Control Solutions

3D Metrology with CT

Metrology

Process flow

- 1. CT Volume data
- 2. Surface
- 3. CAD Data
- 4. Alignment
- 5. Comparison / Measurements

Process flow

- 1. CT Volume data
- 2. Surface
- 3. CAD Data
- 4. Alignment
- 5. Comparison / Measurements

Process flow

- 1. CT Volume data
- 2. Surface
- 3. CAD Data
- 4. Alignment
- 5. Comparison / Measurements

Process flow

- 1. CT Volume data
- 2. Surface
- 3. CAD Data
- 4. Alignment
- 5. Comparison / Measurements

Process flow

- 1. CT Volume data
- 2. Surface
- 3. CAD Data
- 4. Alignment
- 5. Comparison, Measurements

+300µm above CAD`

-300µm below CAD

Al casting: CT vs. CMM

CT system:

phoenix v|tome|x m 300 in air conditioned environment

Al Cylinderhead model by ACTech GmbH, Germany

Reference system:

Hexagon Metrology/Leitz PMM 12106 in certified measurement room class 1

Al Casting: distances comparison

DEUTSCHER KALIBRIERDIENST

Kalibrierlaboratorium für Länge / Koordinatenmesstechnik Calibration laboratory for length / coordinate metrology

Akkreditiert durch die / accredited by the Akkreditierungsstelle des Deutschen Kalibrierdienstes

Kalibrierzeichen Calibration mark

7754 DKD-K-25901 2009-04

GE /

Kalibrierschein Calibration certificate

(gg)	imagination at work
------	---------------------

Feature	tactile DKD value	CT value	Dev CT-tactile
1. Z09A-Z09B-A	64,9993	65,0041	0,004
2. Z09A-Z10A-A	20,0094	20,0056	-0,004
3. Z09B-Z10A-A	68,0055	68,0088	0,003
4. Z13A-Z13B-A	88,4336	88,4332	0,000
5. Z10A-Z13B-A	100,6552	100,6476	-0,007

Al Casting: diameter comparison

Z10A+E01

Z10A-KMG Meas 3.5959

Diameters

DEUTSCHER KALIBRIERDIENST

Kalibrierlaboratorium für Länge / Koordinatenmesstechnik Calibration laboratory for length / coordinate metrology

Akkreditiert durch die / accredited by the Akkreditierungsstelle des Deutschen Kalibrierdienstes

Kalibrierschein Calibration certificate Kalibrierzeichen Calibration mark

7754 DKD-K-25901 2009-04

eauture	tactile DKD value	CT value	Dev CT-tactile
Z09A-DM	3,5963	3,5956	-0,001
Z09B-DM	3,5974	3,5952	-0,002
Z10A-DM	3,5962	3,5959	0,000
Z10B-DM	3,5949	3,5930	-0,002
Z13A-DM	6,0153	6,0194	0,003
Z13B-DM	6,0162	6,0197	0,003
Z14-DM	7,0033	7,0083	0,004

GE Measurement & Control Solutions

Recent advances of high-resolution CT

CT for turbine blade inspection

UNIPOLAR 300 kV microfocus X-ray tube

max. voltage: 300 kV

unipolar design, FOD < 5 mm

max. power: 500 W

focal spot size: 3 – 200 μm

225kV 300kV

>>> Reduced artifacts: increased global gray value homogeneity allows higher measurement accuracy

Example for wall thickness measurements on a jet engine turbine blade with v|tome|x m 300

CT for materials science

State of the art

 $V = 15 \mu m$, 100kV, 470 μA , Mode 0, 1h

nanotom m

 $V = 15 \mu m$, 100kV, 470 μA , Mode 0, 1h

Improved sharpness (+80%) & increased CNR (+100%) due to diamond window and low noise detector.

GE Gantry based CT for fast 3D industrial part inspection

GE AtlineCT overview

Inspection volume: 400mm width x 300mm height x 800mm length Up to 50kg sample weight

Scan- and inspection times: 5-10mm/s

-> 10-60s for typical castings

Spatial resolution:

≥ 300µm

->min. detectable defect size: >0.5 mm

Penetration length: up to 300mm Al

GE 3D automatic defect analysis and -classification

Designed for operation in harsh environments (foundries)

Belt conveying system

GE 3D Automatic Defect Detection

Result on a die casting, 5 s defect detection time

Automated 3D inspection with CT

Usage of CAD-models

Detection of part deviations and defects in 3D

- Actual-Nominal-Comparison (part deviations)
- Comparison to admissible tolerances
- Compare with CAD-Data of machined part
- Defect unearthing after machining
- Wall thicknesses after machining

GE InlineCT Setup

Grazie Mila esker! mille! Merci beaucoup! 谢谢!

¡Muchas gracias!

Muito obrigado!

Many thanks for your kind attention!

Vielen Dank!

Большое спасибо! Tack så mycket!

imagination at work

どうもありがとうございます!

High-resolution X-ray computed tomography

Sites and contacts

Wunstorf Germany	Headquarters + central laboratory world-wide	phoenix-info@ge.com
Stuttgart Germany	Branch laboratory Germany/Switzerland	phoenix-stuttgart@ge.com
Munich Germany	Branch laboratory Germany/Austria	phoenix-muenchen@ge.com
Limonest France	Branch laboratory France	phoenix-france@ge.com
Lewistown Pennsylvania/USA	Branch laboratory USA	phoenix-lewistown@ge.com
San Carlos California/USA	Branch laboratory USA	phoenix-san-carlos@ge.com
Shanghai China	Branch laboratory Asia	phoenix-shanghai@ge.com
Quezon City The Philippines	Service + Support Asia	phoenix-asia@ge.com

Contact and further information:

Visit:

www.phoenix-xray.com or www.ge-mcs.com/phoenix

"I find out what the world needs. Then I go ahead and try to invent it."

Thomas A. Edison Founder, GE

