Component characterization using optical methods

Mikael Sjödahl, LTU (guest professor HV)

Shape Defects Mechanical response

Experimental methods

- Intensity based methods
- Imaging
- Image processing
- X-ray microtomography
- Interferometric methods
- Laser vibrometry
- Digital Holography
- Mixed domain imaging

Pulsed Digital Holography

Volume correlation

Image correlation

High-speed photography

Sensing?

Sensing?

Imaging (Intensity)

For most engineering materials mostly surface or close-to-surface properties

Measurement of shape

Method	Range	Accuracy	Speed
Defocus	< 10 m	~NA (1)	1-20 imag.
Stereo	< 5 m	~sinθ (0.1)	1 imag.
Fringes	< 5 m	~sinθ (0.1)	1-20 imag.
Plenoptic	< 10 m	~NA (1)	1 imag.
Phot. stereo	< 10 m	~qualitative	3-5 imag.
TOF	< 10 m	~ Λ (1)	2 imag.
Holography	< 1m	~λ (10 ⁻³)	1-2 imag.

Stereoscopic surface shape and deformation

Principle: emulates a large lens

(a) (b)

When a deforming object is viewed from two different directions it is possible to measure both the shape and surface deformation of a deforming object simultaneously using stereovision provided the same features can be seen in both views

- (a) Microscopic set-up
- (b) Macroscopic set-up

Typical results

Hygroexpansion in copy paper

Projected fringes

Typical implementation

Restrictions

- Typically 4 x 10 images are projected
- Sensitivity in x-z plane, less sensitive in y

Commercial systems

- GOM
- Vialux
- Phase vision
- Breuckmann
- Dantec
- Steinbichler
- . . .

Possible to combine with stereovision + relationship with defocus obvious

LULEÅ UNIVERSITY OF TECHNOLOGY

- Only one image recording
- Including information about the digital master

C1 P C2

Measurement of object:

radius: 24 mm

traces: width 10 mm, depth 1,2 & 3 mm

Digital master:

Accuracy ≈ 45 µm Largest allowed deviation ≈ 1.6 mm

Industrial example with a projected line (rather than fringes)

Laser Triangulation - 3D Data with Cracks

3D imaging and deformation analysis using x-ray microtomography

3D imaging

Development and application of methods for 3D imaging and quantitative analysis of

internal deformation and strain in inhomogeneous materials.

The investigated material is imaged in 3D using x-ray microtomography.

3D imaging

Here, a dried iron ore pellet (a), 4.5 mm in diameter, was scanned with microtomography.

The result (b) is a high resolution 3D image that describe the microstructure (density variations) throughout the material.

3D imaging and deformation analysis

From two scans with microtomography, separated in time, it is possible to determine the size of an intermediate structural deformation of the material.

Use [u,v,w] as unknowns which gives a technique known as Digital Volume Correlation (DVC)

Here, a cylindrical bed of granular sugar (a), 7 mm in diameter, was exposed to compression.

The result (b), after analysis with DVC, is a 3D deformation field that describe the compaction inside the granular material (in µm), due to the compressive load.

Interferometric techniques (Laser)

For most engineering materials mostly surface or close-to-surface properties

Classical examples (Michelson)

Deformation: $2kd \rightarrow d \sim 1 \text{ nm}$

Doppler shift: $f_0=2kv \rightarrow v \sim 1 \mu \text{m/s}$

 $k=2\pi/\lambda$

Digital holographic reconstructions

$$U(x, y, z) = \iint \mathcal{J}\{U(x, y, 0)\} \exp[ikmz] \exp[ik(px + qy)] dpdq$$

 \Im denotes a Fourier transform, $p^2+q^2+m^2=1$

Holographic shape control

- **Objective:** To control the shape of a manufactured component on-line in the production.
- **Concept:** Pulsed multi-wavelength Digital Holography and numerical point-cloud matching.
- **Here:** The manufactured component is seen illuminated in the upper part of the image whereas the detection part of the system is seen in front.

The strategy (in this case geometric data)

The object

A result using two wavelengths

Residual image between model and measurement

Final shape of the object

Mixed domain methods Sound - light

LULEÅ UNIVERSITY OF TECHNOLOGY

Imaging of blood in vivo:

- Early detection of tumors.
- Quantitative determination of blood oxygenation and flow velocity.

Picture borrowed from **UCL** Centre for Advanced Biomedical Imaging.

LULEÅ UNIVERSITY OF TECHNOLOGY

LULEA UNIVERSITY OF TECHNOLOGY

LULEÅ UNIVERSITY OF TECHNOLOGY

Image size = $10 \times 12.5 \text{mm}^2$. Image taken $5 \mu \text{s}$ after excitation.

Conclusions

- Optics is great for imaging.
- Hardware is relatively cheap for high resolution.
- The wavelength of light ~0.5 µm makes it an accurate ruler for small changes.
- Mixed domain methods are an attractive alternative if features are invisible.